Propriétés thermodynamiques des trifluorocadmiates de rubidium et de césium (RbCdF₃, CsCdF₃) de 10 à 300 K. Transition de phase dans les fluoroperovskites

F. Koussinsa et M. Diot

Laboratoire de Thermochimie minérale, associé au CNRS sous le N° 116, Institut National des Sciences Appliquées de Lyon, 20 avenue A. Einstein, 69621 Villeurbanne Cedex (France) (Reçu le 29 mai 1992)

Résumé

Les valeurs de capacité calorifique des fluorocadmiates de césium et de rubidium ont été déterminées à basse température (10-300 K). Les fonctions thermodynamiques ont été calculées (C_{ρ}° . S° , ($G^{\circ} - H_{0}^{\circ}$)/T). Les résultats sont discutés, pour RbCdF₃, en terme de transition de phase tandis que CsCdF₃ demeure stable dans tout l'intervalle de température étudié.

Thermodynamic properties of rubidium and cesium trifluorocadmiates ($RbCaF_3$, $CsCdF_3$) from 10 to 300 K. Phase transitions in fluoroperovskites

Abstract

The heat capacities of cesium and rubidium fluorocadmiates have been determined in the range 10-300 K. The heat capacity and thermodynamic functions have been calculated $(C_p^{\circ}, S^{\circ}, (G^{\circ} - H_0^{\circ})/T)$. Results for RbCdF₃ are examined using the structural phase transition whereas CsCdF₃ remains stable over the whole temperature range studied.

INTRODUCTION

Les composés de type AMX₃, dans lesquels A est un ion monovalent et M un ion divalent, présentent un intérêt particulier car ils offrent un large

Correspondant: F. Koussinsa, Laboratoire de Thermochimie minérale, associé au CNRS sous le N° 116, Institut National des Sciences Appliquées de Lyon, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France.

choix de matériaux isolants de type perovskite dont les propriétés sont directement liées à la nature des ions A et M.

La plupart des études effectuées sur ces composés ont porté sur l'existence et la nature des transitions de phase qu'ils peuvent présenter [1-4] ainsi que sur les conséquences engendrées par celles-ci [5, 6]. Cependant très peu d'études ont porté sur leurs propriétés thermodynamiques [7-11].

Dans le cadre de notre étude sur la modélisation du comportement énergétique du solide, nous avons déterminé en fonction de la température la valeur de la capacité calorifique et calculé les fonctions thermodynamiques de RbCdF₃ et de CsCdF₃.

L'analyse des conditions de stabilité de la structure perovskite à partir des constantes de force et des rayons ioniques permet d'envisager a priori l'existence d'un changement de structure dû à la rotation des octaèdres MF₆ dans les fluoroperovskites qui vérifient la relation [12] $a_{AMF_3} > (r_A + r_F)\sqrt{2}$, où r_A et r_F sont le rayons ioniques des ions A et F tabulés par Shannon et Prewitt [13]. Avec $r_{Rb^+} = 1,87$ Å, $r_{Cs^+} = 2,02$ Å et $r_{F^-} = 1,19$ Å, seul le composé RbCdF₃ vérifie la relation précédente. Ce que est confirmé expérimentalement par Rousseau et al. [2, 12]. Ce changement de structure se traduit par une anomalie de la courbe représentative de la variation de capacité calorifique en fonction de la température. Ce phénomêne est interprété comme dans le cas de RbCaF₃ [8] en utilisant le modèle de l'octaèdre MF₆ rigide.

PARTIE EXPERIMENTALE

Les composés RbCdF₃ et CsCdF₃ à fusion congruente [14] sont obtenus par réaction directe en phase solide des composés AF (A = Rb, Cs) et CdF₂ en proportion 1:1. Les réactifs utilisés sont des produits Aldrich (Rb, 99,3%, CsF, 99%; CdF₂, 98%). Les opérations sont conduites selon le protocole décrit dans l'article précédemment publié [8]. A noter cependant que la réaction conduite à 450°C est estimée totale au bout de 72 h avec un recuit de 96 h après compression des produits sous forme de barreaux cylindriques.

Les paramètres des mailles calculés sont en accord avec les valeurs de la littérature [12]: $a_{\text{RbCdF}_3} = 4,40$ Å; $a_{\text{CsCdF}_3} = 4,469$ Å.

Les mesures calorimétriques sont réalisées suivant le protocole décrit précèdemment [8], les quantités utilisées au cours des mesures sont respectivement de 21,5762 g soit 8,4567 10^{-2} mole pour RbCdF₃ et 20,8799 g soit 6,9077 10^{-2} mole pour CsCdF₃.

RÉSULTATS

Les valeurs expérimentales de capacité calorifique pour $RbCdF_3$ et $CsCdF_3$ en fonction de la température sont représentées sur les Figs. 1 et 2.

Fig. 1. Capacité calorifique expérimentale de RbCdF₃ en fonction de la température.

L'incertitude sur ces valeurs est d'environ 5% à 15 K et inférieure à 1% au-dessus de 200 K.

L'allure générale de la courbe laisse apparaître dans le cas de RbCdF₃ un comportement particulier à partir de 90 K, la fin du phénomène intervenant à 235 K. Le maximum observé à 118 K correspond à la température de changement de phase. Ce résultat est inférieur à la température de 124 K indiquée par Rousseau et al. [2, 12].

Les fonctions thermodynamiques calculées sont représentées dans le Tableaux 1 et 2 respectivement pour RbCdF₃ et CsCdF₃. Les fonctions thermodynamiques molaires sont obtenues à partir des valeurs expérimentales selon la méthode des polynômes de Tcheybechev et l'extrapolation juspu'au zéro des températures est réalisée à partir d'une loi en T^3 pour les C_p .

DISCUSSION DES RÉSULTATS

L'étude des courbes de capacité calorifique en fonction de la température permet d'observer une discontinuité pour RbCdF₃. En effet

Fig. 2. Capacité calorifique expérimentale de CsCdF₃ en fonction de la température.

entre 90 et 235 K, il apparait une instabilité du réseau de plus en plus marquée conduisant à une transition de phase à 118 K. Cette transition de phase correspond au passage, lorsque la température diminue, de la forme cubique à haute température [14] à la forme tétragonale stable à basse température [2, 12]. L'étude des constantes C_{44} en fonction de la température effectuée par Rousseau et al. [12] a montré une diminution de l'intensité de la force de rappel qui s'oppose à la rotation des octaèdres. Les atomes ainsi déplacés ne reprennent pas leur position d'équilibre initiale, il s'établit alors une augmentation du paramêtre de la maille dans la phase stable à basse température. Ce phénomène a lieu suivant l'axe de rotaton des octaèdres. La transition de phase structurale cubique-tétragonale de RbCdF₃ a été confirmée dans plusieurs articles [2, 12].

Pour CsCdF₃, aucune distortion n'est observée entre 10 et 300 K. La stabilité de la structure de ce composé peut s'expliquer par des effects d'encombrement stériques. En effet Cs⁺ ayant un rayon ionique élevé $(r_{Cs^+} = 2,02 \text{ Å})$, CsCdF₃ ne vérifie pas la relation $a_{AMF_3} > (r_{Cs^+} + r_{F^-}) \cdot \sqrt{2}$,

TABLEAU 1

Т (К)	$C_{\rho} (\mathbf{J} \mathbf{K}^{-1} \operatorname{mol}^{-1})$	S° (J K ⁻¹ mol ⁻¹)	$H_T^{\circ} - H_0^{\circ}$ (J mol ⁻¹)	$-[G_T^{\circ} - H_0^{\circ}]/T$ (J K ⁻¹ mol ⁻¹)		
10	0.8216	0.2975	2.228	0.2228		
15	3.533	1.067	12.18	0.8121		
20	8,251	2,688	40.91	2.045		
25	14,38	5,168	97.05	3.882		
30	21,22	8,390	185.9	6,197		
35	28,10	12,18	309,3	8,839		
40	34,46	16,35	466,0	11,65		
45	40,02	20,74	652,6	14,50		
49	43,92	24,32	820,7	16,74		
60	54,42	34,28	1363	22,73		
70	62,25	43,27	1948	27,83		
80	69,20	52,05	2606	32,57		
90	75,30	60,56	3329	36,99		
100	80,69	68,78	4109	41,09		
110	86,40	76,73	4944	44,95		
115	89,52	80,64	5384	46,82		
118	91,51	82,97	5655	47,92		
125	92,12	88,26	6298	50,38		
130	92,77	91,88	6760	52,00		
135	93,56	95,40	7226	53,52		
140	94,46	98,82	7696	54,97		
145	95,43	102,1	8170	56,35		
150	96,46	105,4	8650	57,67		
155	97,52	108,5	9135	58,93		
160	98,60	111,6	9625	60,16		
170	100,7	117,7	10622	62,48		
180	102,7	123,5	11640	64,66		
190	104,6	129,1	12677	66,72		
200	106,3	134,5	13732	68,66		
210	107,9	139,8	14804	70,49		
220	109,2	144,8	15890	72,22		
230	110,5	149,7	16989	73,86		
240	111,8	154,4	18101	75,42		
250	113,0	159,0	19226	76,90		
260	114,3	163,5	20362	78,31		
270	115,6	167,8	21512	79,67		
2/3,15	116,0	169,2	21877	80,09		
280	117,0	172,0	22676	80,98		
290	118,6	176,2	23854	82,25		
298,15	119,9	179,5	24827	83,27		
300 210	120,2	180,2	25049	83,49		
510	121,9	184,2	26260	84,71		

Fonctions thermodynamiques molaires de RbCdF₃

Т	C _p	S°	$H_T^\circ - H_0^\circ$	$-[G_T^\circ - H_0^\circ]/T$
(K)	$(J K^{-1} mol^{-1})$	$(J K^{-1} mol^{-1})$	$(J \text{ mol}^{-1})$	$(J K^{-1} mol^{-1})$
10	1,017	0,7382	5,163	0,5163
15	3,104	1,467	14,50	0,9671
20	7,192	2,880	39,54	1,997
25	12,66	5,052	88,73	3,549
30	18,92	7,907	167,4	5,582
35	25,42	11,31	278,3	7,952
40	31,75	15,12	421,4	10,53
44	36,50	18,37	558,0	12,68
50	43,04	23,44	796,6	15,93
60	52,88	32,19	1277	21,29
70	61,30	40,99	1849	26,42
80	68,70	49,66	2500	31,25
90	75,24	58,14	3220	35,78
100	80,93	66,37	4002	40,02
110	85,71	74,32	4836	43,96
120	89,65	81,95	5713	47,61
130	92,94	89,26	6627	50,97
140	95,85	96,26	7571	54,08
150	98,60	102,9	8543	56,95
160	101,3	109,4	9543	59,64
170	103,9	115,6	10570	62,17
180	106,4	121,6	11622	64,57
190	108,6	127,4	12698	66,83
200	110,3	133,0	13794	68,97
210	111,8	138,5	14905	70,97
220	113,1	143,7	16030	72,86
230	114,4	148,8	17168	74,64
240	115,6	153,7	18319	76,32
250	116,5	158,4	19480	77,92
260	116,9	163,0	20648	79,41
270	118,1	167,4	21822	80,82
273,15	118,3	168,8	22194	81,25
280	119,0	171,7	23008	82,17
290	119,9	175,9	24203	83,45
298,15	120,7	179,2	25183	84,46
300	120,8	180,0	25407	84,69

Fonctions thermodynamiques molaires de CsCdF₃

qui conditionne l'apparition d'une transition de phase dans les fluoroperovskites [12].

Du point de vue de la dynamique du réseau, la transition structurale observée dans $RbCdF_3$ s'explique par la condensation d'un mode mou R_{25} triplement dégénéré, qui se dédouble pour produire deux modes (A_{1g} et E_g) qui ont également un comportement de modes mous dans la structure de

TABLEAU 2

basse symétrie. Ce résultat est confirmé par les études structurales sur les perovskites à basse température [2, 6, 12]. Il faut cependant remarquer que l'existence d'un mode mou n'est pas une condition suffisante pour observer une transition de phase comme le démontre l'étude de CsCdF₃.

CONCLUSION

L'étude thermodynamique réalisée sur RbCdF₃ et CsCdF₃ s'inscrit dans un travail plus général, mené sur les fluoroperovskites. les transitions de phase observées sur les composés RbCdF₃ et RbCaF₃ [8] à partir de l'étude des fonctions thermodynamiques, peut s'interpréter à partir du modèle de l'octaèdre rigide. Cependant si le traitement peut se faire suivant un modèle de transition ordre-désordre pour le composé du calcium, cette approche ne conduit pas, dans le cas du cadmiate, à une valeur de l'incrément d'entropie significative quant à la variation du degré d'ordre entre les phases haute et basse température. Pour RbCdF₃ l'analyse de la transition montre que l'influence de la condensation des modes mous est prépondérante.

La stabilité des composés $CsCdF_3$ et $CsCaF_3$ [8] est liée à la taille de l'ion Cs^+ . Les études déduites des mesures spectroscopiques montrent que la profondeur des puits de potentiels définissant la position des ions F⁻ pour les composés du type AMF₃ est directement liée à la taille du cation A. Plus ce cation est gros, moins l'octaèdre a de liberté de mouvement [15, 16]. Il en résulte que dans le cas des composés du potassium, qui possède un cation petit, il doit se produire une rotation plus facile de l'octaèdre dès les basses températures. L'étude de ces produits est en cours.

BIBLIOGRAPHIE

- 1 K. Gesi, J.D. Axe, G. Shirane et A. Linz, Phys. Rev. B, 5 (1972) 1933.
- 2 M. Rousseau, J.Y. Gesland, J. Julliard, J. Nouet, J. Zarembowitch et A. Zarembowitch, J. Phys. (Paris), Lett., 36 (1975) L-121.
- 3 L.L. Boyer, J. Phys. C, 17 (1984) 1825.
- 4 F.A. Modine, E. Sonder, W.P. Unruh, C.B. Finch et R.D. Westbrook, Phys. Rev. B, 10 (1974) 1623.
- 5 R.A. Cowley, Phys. Rev. A, 134 (1964) 981.
- 6 Y.A. Popkov, V.V. Eremenko et V.I. Fomin, Soviet Phys.-Solid State, 13 (1972) 1701.
- 7 A. Bulou, C. Ridou, M. Rousseau, J. Nouet et A.W. Hewatt, J. Phys. (Paris), 41 (1980) 87.
- 8 F. Koussinsa, B. Bonnetot et M. Diot, Thermochim. Acta, 206 (1992) 1.
- 9 R. Navarro, R. Burriel, J. Bartolomé et D. Gonzalez, J. Chem. Thermodyn., 18 (1986) 1135.
- 10 R. Burriel, J. Bartolomé, D. Gonzalez, R. Navarro, C. Ridou, M. Rousseau et A. Boulou, J. Phys. C, 20 (1987) 2819.
- 11 E. Palacios, R. Navarro, R. Burriel, J. Bartolomé et D. Gonzalez, J. Chem. Thermodyn., 18 (1986) 1089.

- 12 M. Rousseau, J.Y. Gesland, J. Julliard, J. Nouet, J. Zarembowitch et A. Zarembowitch, Phys. Rev. B, 12 (1975) 1579.
- 13 R.D. Shannon et C.T. Prewitt, Acta Crystallogr., Sect. B, 25 (1969) 925.
- 14 J.C. Cousseins et C. Pina Perez, Rev. Chim. Miner., 5 (1968) 147.
- 15 A. Boulou, J. Nouet, A.W. Hewatt et J.F. Schäfer, Ferroelectrics, 25 (1980) 375.
- 16 C. Ridou, M. Rousseau, J.Y. Gesland et J. Nouet, Ferroelectrics, 12 (1976) 199.